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• Service Fabric overview
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 Stateless and Stateful
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• Upgrade application
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Service Fabric Architecture



Service Fabric architecture: cluster

• Cluster is a federation of machines

• Cluster can scale to 1000s of 
machines



Service Fabric architecture: replication system
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• Replica states
 None

 Idle secondary

 Active secondary

 Primary



Service Fabric architecture: replication system

P

S S

S S

• Reads are completed at the 
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 Removing a failed secondary

 Adding recovered replica

 Building new secondary
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Service Fabric architecture: partitioning

• Allow data/computation to be spread across nodes

• A partition must fit in 1 node / 1 node can hold multiple partitions

• Cross-partitions operations requires network hops and different transactions

• SF balances partitions across nodes
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Service Fabric application model



DEMO
run your local cluster



• Encapsulate a business scenario

• Can be written in any programming language

• Consist of code and (optionally) state that is independently versioned, deployed 
and scaled

• Has a unique name, used to resolve its location

• Remains consistent and available in the presence of failure

• Interacts with other microservices

What is a microservice?



The actor model in computer science is a mathematical model of 
concurrent computation that treats "actors" as the universal primitives of 
concurrent computation: in response to a message that it receives, an 
actor can make local decisions, create more actors, send more 
messages, and determine how to respond to the next message received

https://en.wikipedia.org/wiki/Actor_model
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• Actors are isolated, single-threaded components that encapsulate both state and 
behavior

• Each such actor is uniquely identified by an actor ID

• Actors interact with rest of the system, including other actors, by passing 
asynchronous messages using a request-response pattern

Service Fabric Reliable Actors API



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

Stateless actor: definition
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var actorId = ActorId.NewId(); 

var applicationName = "fabric:/CalculatorActorApp"; 

var actor = ActorProxy.Create<ICalculatorActor>(actorId, 
applicationName)

Actor communication: the actor proxy
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stateless actor vs stateful actor
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DEMO
upgrade application



Free e-book available at:

http://go.particular.net/Liguria

Curiosi?


