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Why Service Fabric?

Monolithic application approach Microservices application approach
£ep 1 Appl - App2
© o % %

____________________




Why Service Fabric?
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Service Fabric Architecture

Reliable, Scalable Applications

Application Model Native and Managed APIs

Communication Reliability Subsystem Hosting & Activation
Subsystem
Management
Subsystem Testability

Subsystem
Federation Subsystem
TransportSubsystem




Service Fabric architecture: cluster

Cluster is a federation of machines

Cluster can scale to 1000s of
machines




Service Fabric architecture: replication system

Replica states
- None

- Idle secondary
- Active secondary
* Primary




Service Fabric architecture: replication system

Reads are completed at the l]
primary
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Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

+ Removing a failed secondary
- Adding recovered replica
- Building new secondary
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Service Fabric architecture: partitioning

Allow data/computation to be spread across nodes
A partition must fit in 1 node / 1 node can hold multiple partitions
Cross-partitions operations requires network hops and different transactions

SF balances partitions across nodes
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Service Fabric application model
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Service Fabric application model
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DEMO

run your local cluster



What is a microservice?

* Encapsulate a business scenario
« (Can be written in any programming language

« Consist of code and (optionally) state that is independently versioned, deployed
and scaled

* Has a unigue name, used to resolve its location
* Remains consistent and available in the presence of failure

* |nteracts with other microservices



Actor model

The actor model in computer science is a mathematical model of
concurrent computation that treats "actors" as the universal primitives of
concurrent computation: in response to a message that it receives, an
actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message received

https://en.wikipedia.org/wiki/Actor_model
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Actor model
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Service Fabric Reliable Actors API

« Actors are isolated, single-threaded components that encapsulate both state and
behavior

+ Each such actor is uniquely identified by an actor ID

 Actors interact with rest of the system, including other actors, by passing
asynchronous messages using a request-response pattern



Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();
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Actor communication: the actor proxy

var actorld = ActorId.NewId();
var applicationName = "fabric:/CalculatorActorApp”;

var actor = ActorProxy.Create<ICalculatorActor>(actorld,
applicationName)
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stateless actor vs stateful actor



Upgrade application (with zero downtime)
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upgrade application
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