
Azure Service Fabric
...a gentle introduction

Alessandro Melchiori



Solution architect @ Particular Software

alessandro [dot] melchiori [at] particular [dot] net

twitter: @amelchiori

blog: http://melkio.codiceplastico.com

github: http://github.com/melkio

Alessandro Melchiori

http://melkio.codiceplastico.com/
http://github.com/melkio


• Why Service Fabric?

• Service Fabric overview

• What is a microservice?
 Actor model

 Stateless and Stateful

• Monitoring
 Service Fabric Explorer

• Upgrade application

Agenda



Why Service Fabric?



Where Service Fabric?





Why Service Fabric?



Why Service Fabric?



Service Fabric Architecture



Service Fabric architecture: cluster

• Cluster is a federation of machines

• Cluster can scale to 1000s of 
machines



Service Fabric architecture: replication system

P

S S

S S

• Replica states
 None

 Idle secondary

 Active secondary

 Primary



Service Fabric architecture: replication system

P

S S

S S

• Reads are completed at the 
primary



Service Fabric architecture: replication system

P

S S

S S

• Writes are replicated to the write 
quorum of secondaries



Service Fabric architecture: replication system

P

S S

S S

• Writes are replicated to the write 
quorum of secondaries



Service Fabric architecture: replication system

P

S S

S S

• Writes are replicated to the write 
quorum of secondaries



Service Fabric architecture: replication system

P

S S

S S

• Writes are replicated to the write 
quorum of secondaries



Service Fabric architecture: replication system

P

S S

S S

• Writes are replicated to the write 
quorum of secondaries



Service Fabric architecture: replication system

P

S S

S S

• Writes are replicated to the write 
quorum of secondaries



Service Fabric architecture: replication system reconfig

P

S S

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

P

S S

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

S P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

S P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

S P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

P

P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

S

P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

S

P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: replication system reconfig

S

P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary

B



Service Fabric architecture: replication system reconfig

S

S P

S S

• Types of reconfiguration
 Primary failover

 Removing a failed secondary

 Adding recovered replica

 Building new secondary



Service Fabric architecture: partitioning

• Allow data/computation to be spread across nodes

• A partition must fit in 1 node / 1 node can hold multiple partitions

• Cross-partitions operations requires network hops and different transactions

• SF balances partitions across nodes



Service Fabric architecture: partitioning



Service Fabric architecture: partitioning



Service Fabric application model



Service Fabric application model



DEMO
run your local cluster



• Encapsulate a business scenario

• Can be written in any programming language

• Consist of code and (optionally) state that is independently versioned, deployed 
and scaled

• Has a unique name, used to resolve its location

• Remains consistent and available in the presence of failure

• Interacts with other microservices

What is a microservice?



The actor model in computer science is a mathematical model of 
concurrent computation that treats "actors" as the universal primitives of 
concurrent computation: in response to a message that it receives, an 
actor can make local decisions, create more actors, send more 
messages, and determine how to respond to the next message received

https://en.wikipedia.org/wiki/Actor_model

Actor model



The actor model in computer science is a mathematical model of 
concurrent computation that treats "actors" as the universal primitives of 
concurrent computation: in response to a message that it receives, an 
actor can make local decisions, create more actors, send more 
messages, and determine how to respond to the next message received

https://en.wikipedia.org/wiki/Actor_model

Actor model



Actor model



Actor model



• Actors are isolated, single-threaded components that encapsulate both state and 
behavior

• Each such actor is uniquely identified by an actor ID

• Actors interact with rest of the system, including other actors, by passing 
asynchronous messages using a request-response pattern

Service Fabric Reliable Actors API



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

Stateless actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

Stateless actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

Stateless actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

public class CalculatorActor : StatelessActor, ICalculatorActor

{

...

}

Stateless actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

public class CalculatorActor : StatelessActor, ICalculatorActor

{

...

}

Stateless actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

Stateful actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

public class CalculatorActor : StatefulActor<ActorState>, 
ICalculatorActor

{

...

}

Stateful actor: definition



public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

}

public class CalculatorActor : StatefulActor<ActorState>, 
ICalculatorActor

{

...

}

Stateless actor: definition



var actorId = ActorId.NewId(); 

var applicationName = "fabric:/CalculatorActorApp"; 

var actor = ActorProxy.Create<ICalculatorActor>(actorId, 
applicationName)

Actor communication: the actor proxy



var actorId = ActorId.NewId(); 

var applicationName = "fabric:/CalculatorActorApp"; 

var actor = ActorProxy.Create<ICalculatorActor>(actorId, 
applicationName)

Actor communication: the actor proxy



DEMO
stateless actor vs stateful actor



Upgrade application (with zero downtime)



Upgrade application (with zero downtime)



Upgrade application (with zero downtime)



Upgrade application (with zero downtime)



DEMO
upgrade application



Free e-book available at:

http://go.particular.net/Liguria

Curiosi?


