Azure Service Fabric

..d gentle introduction

Alessandro Melchiori

Solution architect @ Particular Software
alessandro [dot] melchiori [at] particular [dot] net

twitter: @amelchiori

blog: http://melkio.codiceplastico.com
github: http://github.com/melkio

http://melkio.codiceplastico.com/
http://github.com/melkio

Agenda

« Why Service Fabric?
« Service Fabric overview

 Whatis a microservice?
- Actor model

- Stateless and Stateful

« Monitoring
- Service Fabric Explorer

« Upgrade application

Why Service Fabric?

Where Service Fabric?

Azure
Document

Azure Core DB
Infrastructure

billions

thousands of transactions
machines /week

Azure SQL
Database

1.4 million
databases

Intune

re10]0] ¢
devices

Bing
Cortana

500m
evals/sec

Skype for
Business

Hybrid Ops

Event
Hubs

20bn
events/day

H' '”l ll’Ml b "')

INEY, B\

2ONO YNA XATATA TIAZZE2ZXA!!

Why Service Fabric?

Monolithic application approach Microservices application approach
£ep 1 Appl - App2
© o % %

Why Service Fabric?

RSO R S S S

: : : Container Orchestrati
High Availability Hybrid Operations Data Partitioning Se rvice F a b ric Mglr?i?gr?ng &?;egljg mr;:n:;. er?n :;)nr][Self-healing

Simple s - Rolling Upgrades L= [Laiz _ _
programming High Density <y Placement o Sartup & | oad balancing Replication & Failover

models Hyper-Scale Automated Rollback Stateful services Lol shutdown

Windows . Windows
Linux
Server Server

Hosted Clouds

Windows
Server

Private Clouds

Service Fabric Architecture

Reliable, Scalable Applications

Application Model Native and Managed APIs

Communication Reliability Subsystem Hosting & Activation
Subsystem
Management
Subsystem Testability

Subsystem
Federation Subsystem
TransportSubsystem

Service Fabric architecture: cluster

Cluster is a federation of machines

Cluster can scale to 1000s of
machines

Service Fabric architecture: replication system

Replica states
- None

- Idle secondary
- Active secondary
* Primary

Service Fabric architecture: replication system

Reads are completed at the l]
primary

Service Fabric architecture: replication system

Writes are replicated to the write l
quorum of secondaries

Service Fabric architecture: replication system

Writes are replicated to the write
quorum of secondaries

Service Fabric architecture: replication system

Writes are replicated to the write
quorum of secondaries

Service Fabric architecture: replication system

Writes are replicated to the write l
quorum of secondaries

Service Fabric architecture: replication system

Writes are replicated to the write
quorum of secondaries

Service Fabric architecture: replication system

Writes are replicated to the write
quorum of secondaries

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

+ Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

+ Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

- Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

- Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

 Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
« Primary failover

 Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

+ Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover

- Removing a failed secondary
- Adding recovered replica
- Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
» Primary failover

* Removing a failed secondary
- Adding recovered replica
» Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
* Primary failover
+ Removing a failed secondary

- Adding recovered replica
* Building new secondary

Service Fabric architecture: replication system reconfig

Types of reconfiguration
« Primary failover

+ Removing a failed secondary
- Adding recovered replica
* Building new secondary

Service Fabric architecture: partitioning

Allow data/computation to be spread across nodes
A partition must fit in 1 node / 1 node can hold multiple partitions
Cross-partitions operations requires network hops and different transactions

SF balances partitions across nodes

Service Fabric architecture: partitioning

Service Fabric architecture: partitioning

Service Fabric application model

Appll cationTypel Applu:atmnT}rpEf_

ApplicationType3

ServiceType2

m ﬁ¢¢

Service Fabric application model

MyApp2

MyAppl
[AppliationTypel]

(AppliationType1]

Stat eful SvcH StatelessSvcy
(ServiceType3) (ServiceTyped)

StatelessSvcA Stateful SvcB Stateful SvecC
[ServiceType1) (ServicaType2) (ServiceType2)

k.

Partition 1 (Part'rtin
—0|:R&p|iCE|'| :] Replica 1 -o[:lnstance 1 :|
-—v| Feplica 2 | Replica 2 —r| Instance 2 |
—il Replica 3 | Replica 3

Partitiomn 1

e

DEMO

run your local cluster

What is a microservice?

* Encapsulate a business scenario
« (Can be written in any programming language

« Consist of code and (optionally) state that is independently versioned, deployed
and scaled

* Has a unigue name, used to resolve its location
* Remains consistent and available in the presence of failure

* |nteracts with other microservices

Actor model

The actor model in computer science is a mathematical model of
concurrent computation that treats "actors" as the universal primitives of
concurrent computation: in response to a message that it receives, an
actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message received

https://en.wikipedia.org/wiki/Actor_model

Actor model

The actor model in computer science is a mathematical model of
concurrent computation that treats "actors" as the universal primitives of
concurrent computation: in response to a message that it receives, an
actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message received

https://en.wikipedia.org/wiki/Actor_model

Actor model

Main
thread

Actor

Actor model

Actorldl
Method2

Actorldl
Methodl

Request arrived, lock
T acquired without wait

® Entered Methodl Request arrived,
® \waiting for lock

Time

Created Task asynchronously

Exited Methodl

Task completed

Lock released
Lock acquired
Entered Method2
Created Task
Task completed
Exited Method2
Lock released

\j

Actorldl

Timer

message ‘abcl23’)

Request arrived,
® waiting for lock
asynchronously

Lock acquired

Entered callback

Created Task

Exited callback

Task completed

*o—0—0—90—9 o

Lock released

Actorld2
Method1

(For client request

L Request arrived,
waiting for lock

asynchronously

Lock acquired
Entered Methodl
Created Task
Exited Method1

Task completed

Lock released

Actorld2
Methodl
(For client request
message wWyz783")

Request arrived, lock
acquired without wait

Entered Methodl
Created Task
Exited Method1

Task completed

Lock released

Actorld2
Reminder

Request arrived,
@ waiting for lock

asynchronously

Lock acquired

Entered callback

Created Task

Task completed

Exited callback

Lock released

Service Fabric Reliable Actors API

« Actors are isolated, single-threaded components that encapsulate both state and
behavior

+ Each such actor is uniquely identified by an actor ID

 Actors interact with rest of the system, including other actors, by passing
asynchronous messages using a request-response pattern

Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

public class CalculatorActor : StatelessActor, ICalculatorActor

{

Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

public class CalculatorActor : StatelessActor, ICalculatorActor

{

Stateful actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();

Task<Int32> GetValue();

Stateful actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();
Task<Int32> GetValue();

public class CalculatorActor : StatefulActor<ActorState>,
ICalculatorActor

{

Stateless actor: definition

public interface ICalculatorActor : IActor

{

Task Increment();
Task<Int32> GetValue();

public class CalculatorActor : StatefulActor<ActorState>,
ICalculatorActor

{

Actor communication: the actor proxy

var actorld = ActorId.NewId();
var applicationName = "fabric:/CalculatorActorApp”;

var actor = ActorProxy.Create<ICalculatorActor>(actorld,
applicationName)

Actor communication: the actor proxy

var actorld = ActorId.NewId();
var applicationName = "fabric:/CalculatorActorApp”;

var actor = ActorProxy.Create<ICalculatorActor>(actorld,
applicationName)

DEMO

stateless actor vs stateful actor

Upgrade application (with zero downtime)

Upgrade application (with zero downtime)

Upgrade application (with zero downtime)

Upgrade application (with zero downtime)

DEMO

upgrade application

Dr. Harvey and the

C U I’IOSI7 8 Fallacies of

Distributed Computing

Free e-book available at:

http://go.particular.net/Liguria

